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Abstract

The transient two-¯uid model has been used to develop a general relation for acoustic waves with steam±water
two-phase mixture in one-dimensional ¯owing system. The analysis is valid in principle over the whole void fraction

region. Both the mechanical and thermal nonequilibrium are considered. The vapor±liquid interface heat ¯ux is
derived from the one dimensional Fourier heat conduction equation to evaluate the interphase evaporation or
condensation rate. Calculations are performed for pressures from 0.07 to 16.0 MPa, void fractions from 0.0 to 1.0.
Higher frequency limit of sonic velocities are only relied on the pressures and void fractions, and are insensitive to

the bubble radius, tube diameter, and the velocity di�erence between the two phases. The predicted sonic velocities
are compared with some experimental data for low pressures. Good agreement has been achieved between the
predictions and the experimental data. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The proper treatment of several nuclear reactor
safety problems requires a knowledge of pressure wave

propagation in a single-component, two-phase mixture.
These include the analysis of choked ¯ows after a pos-
tulated break of hot or cold leg of pressurized water
reactor and the prediction of the onset of ¯ow instabil-

ity in parallel boiling channels.
Moody [1] developed a simple acoustic wave model

for bubbly ¯ow and annular ¯ow, and established a re-

lationship between sonic velocity and two-phase critical
¯ow. He assumed that no evaporation or condensation
will occur when pressure wave is travelling. Similar

model was developed by Darcy [2]. Mecredy and

Hamilton [3] used the two-¯uid model to predict the

pressure wave propagation in vapor±liquid ¯ow in
detail. However, the analysis contained the important
assumption that the evaporation or condensation was

governed by kinetic theory. In consequence, the pre-
dicted sonic velocities were found to depend strongly
on the assumed accommodation coe�cients for mol-
ecular transfer. Since these coe�cients are unknown

functions of pressure, temperature and liquid cleanli-
ness, etc., their results implied that sonic velocities and
attenuation could never be con®dently predicted for a

vapour±liquid system.
In recent years, the two-¯uid model applied in deter-

mining the pressure wave propagation characteristics

mainly concerns the pressure wave propagation in low-
pressure air±water two-component bubbly ¯ow or
annular ¯ow regime [4±6]. For instance, Chung [7] cal-
culated the sonic velocity versus angular frequency

from the concept of bubble compressibility in a two-
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component bubbly ¯ow regime. He also extended such

a model to predict the sonic velocity of a vapor±liquid
system [8].

Compression wave propagation was studied through

opening the valve abruptly, while rarefaction wave
propagation was investigated through suddenly intro-

ducing gas or steam into the ¯owing two-phase mix-

ture [9±11]. Such experiments were conducted under
the condition of either low void fraction, or high void

fraction in low pressures.

Let us consider the safety problems related to the
loss of coolant accident on the hot or cold leg of the

pressurized water reactor. The two-phase critical ¯ow,

and the pressure pulse travelling in the reactor core
system are mainly governed by the degree at which the

two-phase system is relaxed on the mechanical and
thermal respects in a variable pressure and void frac-

tion ®eld. However, to authors' knowledge, up to now,

not any theoretical model or correlation can calculate
the sonic velocities over the whole pressure and void

fraction (¯ow pattern) ranges. This is the main objec-
tive of the present job.

A general relation for acoustic waves in a ¯owing

vapor±liquid system was developed. Much attention

has been paid to the mechanical and thermal nonequi-
librium. Bubbly ¯ow is assumed to exist if void frac-

tion is less than 0.25. We assume that small bubbles
may coalescence to form churn ¯ow at void fraction

larger than 0.25. Further increasing the void fraction
to be larger than 0.8 will result in the churn ¯ow
absorbing all smaller bubbles to form annular ¯ow.
Di�erent correlations are used to predict the interfacial

area and interfacial drag force per unit mixture volume
for di�erent ¯ow regimes.

2. Mathematical models

The present theory depends mainly upon the follow-

ing assumptions:

. The ¯ow system is one-dimensional;

. Before the travelling of the pressure wave front the

¯ow is in thermal and mechanical equilibrium.
However, the ¯ow is in thermal and mechanical
nonequilibrium when the pressure wave is travelling;

. Flow pattern transitions are assumed to occur at
certain void fractions.

We consider the motion of small amplitude mono-

chromatic waves of frequency o, wave number K,
travelling along the duct axial location z. In the dis-
turbed ¯ow, oscillations in the primary variables are

Nomenclature

a Sonic velocity, m/s
aG Sonic velocity of saturated vapor, m/s
aL Sonic velocity of saturated liquid, m/s

aI Interfacial area per unit mixture volume, m2/
m3

D Tube inside diameter, m

DL Liquid thermal di�usivity, m2/s
fI Interfacial friction coe�cient
hGL Evaporation latent heat, J/kg

i Imaginary number
�������ÿ1p

K Wavenumber
P Pressure, Pa
qLI Heat ¯ux from the liquid to the interface,

w/m2

Rb Bubble radius, m
S Slip ratio, UG/UL

t Time, s
T Temperature, K
U Velocity, m/s

Ur Relative velocity between the two phases, m/s
x Distance from the interface, m
x- Vapor mass fraction

z Axial location in one-dimensional ¯ow system,
m

Greek symbols
G Evaporation or condensation rate, kg/(m3s)
a Void fraction of gas phase

Z Attenuation coe�cient
l Thermal conductivity, w/m 8C
m Viscosity, kg/m s

p Arc angular
r Density, kg/m3

t Interface shear stress per unit mixture volume,

N/m3

o Angular frequency, Hz
z Any parameter

Subscripts

G Vapor phase
L Liquid phase
GI Vapor phase close to the interface
LI Liquid phase close to the interface

o Value of undisturbed ¯ow
sat Saturated condition
B Bubbles
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given by

z � zo � Dz exp�i�otÿ Kz�� �1�
General equations of one-dimensional two-¯uid

model for the conservation of mass and momentum

are coming from [12], neglecting the friction pressure
loss between the wall surface and the two phases.
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The two-phase energy equations are not used here.

This is useful to simplify the derivation of the general
wave number K equation. In fact, considering the mass
transfer of the interface evaporation, or condensation

rate in mass equations re¯ects the energy exchange
between the two phases. In addition, we shall note that
GG+GL=0, tGI+tLI=0. The di�erential terms of (@r/
@t ) and (@r/@z ) for phase G and phase L can be
replaced by the di�erential terms of (@P/@t ) and (@P/
@z ) through introducing the single phase sound speeds

for both phases:
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where aL and aG are sound speeds of saturated water
and steam, which are determined by [13] in this study.

Therefore Eqs. (2)±(5) are modi®ed to be
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Solutions of Eqs. (10)±(13) constitute the matrix

(a,P,UG,UL)
T. We notify that the matrix

(ao,Po,UG,o,UL,o)
T can satisfy Eqs. (10)±(13) before the

¯ow is disturbed. However, when the pressure pulse
travels in the ¯ow system,

�a,P,UG,UL�T� �ao,Po,UG,o,UL,o�T

� �da,dP,dUG,dUL�T exp�i�otÿ Kz�� �14�

can also satisfy Eqs. (10)±(13). Thus the four equations
before the ¯ow is disturbed, incorporating another
four equations with mechanical and thermal nonequi-

librium after the pressure pulse is travelling in the sys-
tem, consist of eight equations. Simplifying the above
eight equations and further determining the interface

parameters GG, GL, tGI, tLI, UGI and ULI, will even-
tually result in the wave number K equation.

2.1. Evaporation or condensation rate

The evaporation rates are assumed to be governed
by the conduction heat transfer from liquid to the

interface. This assumption is useful in bubble growth
analysis. Such evaporation rate is

GG � ÿGL � ÿqLIaI
hGL

�15�

The di�usive heat ¯ux can be calculated by solving

the one-dimensional Fourier equation in the liquid
close to the interface. At a distance x from the inter-
face, we have
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subject to the boundary conditions of

TL4To � dTLI exp�i�otÿ Kz�� as x40 �17�

TL4To as x41 �18�
The solution of Eq. (16) satisfying the above bound-

ary conditions is
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The interface heat ¯ux is simply
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It should be noted that the heat ¯ux leads the driv-

ing temperature by 458.
It is assumed that the vapor phase is saturated cor-

responding to the system pressure. Because the inter-
face heat transfer coe�cient is large, the liquid

interface subject to the vapor phase is assumed to have
the same temperature of the vapor phase. Based on
these, liquid temperature change due to the pressure

pulse is dTLI=(dT/dP )satdP, where (dT/dP )sat is the
gradient of temperature versus pressure along the satu-
rated line. The analysis is correct for low frequency of

pressure pulse, for instance o< 103 Hz. When the fre-
quency is well above the bubble resonance, for instance
o> 105 Hz, further study is expected on the better
interface heat and mass transfer model. The vapor and

liquid pressures are not equal at such conditions. The
present assumptions result in the following interface
heat ¯ux correlation.
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2.2. Interfacial area and interfacial drag force

For small periodic changes in the liquid and vapor
system, the interface drag may be expanded in the lin-

ear approximation to give
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The form of tGI depends on the ¯ow regime, speci®c

examples are inserted for illustrative calculations given
as follows.

2.2.1. Bubbly ¯ow regimes
In bubbly ¯ow regime, assuming a uniform distri-

bution of spherical bubbles of mean radius Rb, we can

drive the interfacial area per unit mixture volume as

aI � 3a
Rb

�26�

Wallis [14] obtained an expression of tGI from the
expression for the drag on a single sphere.

tGI � ÿtLI

� ÿ9amLUr

2R2
b

ÿ a
2
rL

1� 2a
1ÿ a

�
@Ur

@ t
�UG

@Ur

@z

�
�27�

The ®rst term is the Stokes viscous drag, and the
second term represents the inertia drag due to the vir-
tual mass of the bubble.

According to Eq. (25), we have
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a
2
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2.2.2. Annular ¯ow regime
In annular ¯ow regime, assuming that the liquid ®lm

is distributed uniformly on the tube wall, we can write

the interfacial area per unit mixture volume as

aI � 4
���
a
p
D

�29�

Wallis [14] proposed an expression of interfacial
drag force per unit mixture volume to be

tGI � ÿ1
2
fIrGaIU

2
r �30�

fI � 0:005�1� 75�1ÿ a�� �31�
So we have

t 0 � ÿfIrGaIUr �32�
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2.2.3. Churn ¯ow regime

Through analyzing the minimum distance between
bubbles to keep bubbles move freely, Gri�th et al. [15]
suggested that the coalescence possibility is increased

and eventually ¯ow regime transition occurs from bub-
bly ¯ow to other ¯ow regimes, such as slug ¯ow or
churn ¯ow, if void fraction is larger than 0.25. The

published experimental data also show that no bubble
coalescence occurs in bubbly ¯ow regime if a < 0.2,
but the void fraction can not exceed 0.3 in bubbly ¯ow
[16]. Therefore the present model speci®es the critical

void fraction at which the bubbles begin to coalescence
and eventually induce the churn ¯ow to be 0.25. It
should be noted that the above ¯ow pattern transition

criteria is a rough estimation. Such transition is com-
plicated for a certain ¯ow system, and depends on the
two-phase ¯ow rate, void fraction, ¯uid properties,

¯ow direction versus gravity, and pipe diameter and so
on. However, the above transition estimation based on
the void fraction is very useful to simplify the pressure

wave analysis, and can give useful information on the
sonic velocity and attenuation. In churn ¯ow regime,
the interface area and drag force are estimated as a
liner relations between the bubbly ¯ow and annular

¯ow versus void fraction.
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0
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It is assumed that the annular ¯ow exists when the
void fraction begins to exceed 0.8.

2.2.4. Determination of UGI and ULI

The velocity ®eld is continuous across the interphase
boundary, with the interface velocity equal to the bulk
velocity of the liquid phase [17],

UGI � ULI � UL �35�

This is reasonable for separated ¯ows when

(UGÿUL) is large. In bubbly ¯ow regime, the interface
velocity is close to the gas velocity of UG. However, in
this case the large mutual drag force ensures that

UG 3 UL, thus the use of Eq. (35) introduces only a
small error.

3. Solution of the present model

To simplify Eqs.(10)±(13), we obtain the following
four linear homogeneous equations with four unknown

quantities.
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For a unique solution of the above equations to
exist, the determinant of the coe�cient matrix must
vanish, this implies that

Then Eq. (37) has four independent solutions of

Ki(o ) corresponding to two `path waves' advancing

with the bulk phase velocity UL and UG, and two

`composite waves' which are a mixture of acoustic and

kinematic perturbations. A useful dispersion relation

can be made by considering ¯ows at low Mach num-

bers, UG, ULWo/K such that oÿUGK 3 o,
oÿULK 3 o. The composite waves then degenerate

into two path waves and two acoustic waves.

Multiplying out the determinant in Eq. (37), the wave

numbers of the acoustic disturbances can be shown to

be roots of the quadratic equation.
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The two roots of the above equation are equal but
opposite in sign. One of them represents a wave mov-

ing in z direction and the other in the negative direc-
tion. The real part of K is then used to obtain the
sonic velocity a=o/Real(K ), while the imaginary part

of the root equals to Z, the wave number attenuation
coe�cient.

4. Results and discussion

Results of illustrative calculations for two-phase

sonic velocities and attenuation coe�cients as a func-
tion of angular frequency are plotted in Figs. 1±3 for various void fractions at pressure of 16.0 MPa.

Calculations at pressure of 16.0 MPa are of interest to

the typical pressurized water reactor due to such press-

Fig. 1. Sonic velocities and attenuation coe�cients versus

angular frequencies in bubbly ¯ow regime at P = 16.0 MPa,

Rb=0.5 mm, and Ur=0.5 m/s.

Fig. 2. Sonic velocities and attenuation coe�cients versus

angular frequencies in churn ¯ow regime at P= 16.0 MPa,

Ur=0.5 m/s, and D = 20.0 mm.

Fig. 3. Sonic velocities and attenuation coe�cients versus

angular frequencies in annular ¯ow regime at P = 16.0 MPa,

Ur=0.5 m/s and D = 20.0 mm.
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ure being nearly equal to the steady state operation

pressure. Results are given for bubble radius of 0.5
mm, vapor±liquid relative velocity of 0.5 m/s in a tube
of 20.0 mm inside diameter. However, in bubbly ¯ow

regime the tube diameter is not required. In annular
¯ow regime, bubble radius is not needed. From these
®gures, the following conclusions can be drawn.

In any ¯ow regime, sonic velocities increase with
increasing angular frequency at low angular frequency

(o< 1030104 Hz). Once the frequency reaches the
value of 1030104 Hz, the sonic velocity obtains a
limit value. At low frequency, more time is provided

for the momentum and thermal transport between the
phases to make the mixture `softer' and increase the

bubble compressibility, such that lower sonic velocity
results. In other words, the lower frequency limit of
sonic velocity is close to be governed by mechanical

and thermal equilibrium in the mixture. At higher fre-
quencies, for instance o > 104 Hz, less time is pro-
vided for the mixture to reach the mechanical and

thermal equilibrium, and the mixture becomes `sti�er',
which results in higher sonic velocity. Higher frequency

limit of sonic velocity is close to be dominated by the
mechanical and thermal nonequilibrium in the mixture.
In bubbly ¯ow regime (see Fig. 1), sonic velocities

are sensitive to the variation of the void fractions.
Lower sonic velocity results from the increased com-
pressibility of the mixture when the void fraction is

increased. The attenuation coe�cients rise with
increasing void fractions.

In churn ¯ow regime with medium void fractions,
sonic velocities and attenuation coe�cients as a func-
tion of angular frequency are illustrated in Fig. 2.

Predictions show that higher frequency limit of sonic
velocity versus void fractions has a minimum value.

The attenuation coe�cients are decreased with increas-
ing the void fraction, which is di�erent from that of
bubbly ¯ow.

In annular ¯ow regime, little in¯uence of void frac-
tion on the sonic velocity is found (see Fig. 3). Sonic
velocities at di�erent void fractions are very close to

those of saturated vapor. For instance, the two-phase
sonic velocity at pressure of 8.0 MPa and void fraction

of 0.8 is 488 m/s, which is very close to that of the
saturated vapor of 486 m/s at the same pressure. Both
liquid and vapor phases are continuous phases when

the ¯ow is in annular ¯ow regime with vapor ¯owing
in the core and the liquid ¯owing as a ®lm along the
tube wall. The two-phase sonic velocity is very close to

that of saturated vapor, which is veri®ed by the exper-
iments, even though some liquid droplets entrained in

the gas core are not considered in the present model.
Figure 3 also illustrates the insensitive attenuation
coe�cients versus void fraction in the annular ¯ow

regime.
Theoretical curves of sonic velocities versus pressures

are illustrated in Fig. 4 at di�erent void fractions.
Sonic velocities of saturated liquid and vapor are

plotted based on the data of Ref. [13]. It is found that

the e�ects of pressure on the sonic velocities are com-
plicated. At the ®xed, very low void fractions, for

instance a < 0.01, with increasing pressures, sonic vel-

ocity increases, obtains a maximum value, then
decrease. At larger void fractions (bubbly ¯ow or

churn ¯ow), sonic velocity is increased with increasing

the pressures. Sonic velocity at void fraction of 0.85 is
nearly equal to that of saturated vapor.

Based on the present theory, two-phase sonic vel-
ocities depend on the pressure, void fraction, angular

frequency, vapor±liquid relative velocity

(Ur=UGÿUL). Additional information on bubble
radius Rb in bubbly ¯ow regime, and tube diameter D

in annular ¯ow regime are also required. The angular

frequency governs the degree at which the two-phase
mixture relaxes on the mechanical and thermal

respects. Pressure a�ects the physical properties.

Bubble radius, tube diameter and the relative vel-

ocity di�erence between the two phases a�ect the
momentum or the mass exchange between the two

phases. Figure 5 shows the sonic velocities versus

angular frequencies at di�erent void fractions and
di�erent bubble radius in bubbly ¯ow regime.

Assuming the bubble radius of 1.0 and 0.5 mm only

a�ect the sonic velocities at low angular frequencies,
for instance o < 103 Hz. Increasing the bubble radius

will decrease the interface area between the two phases

and decrease the evaporation or condensation rate,
thus result in larger sonic velocities. However, the

above conclusion is only valid at low angular fre-

quency. Bubble radius does not in¯uence the higher
frequency limit of sonic velocity. This is because the

sonic velocities are close to be governed by the mech-

anical and thermal nonequilibrium at high frequency.
In a practical two-phase system, the bubble size is not

uniform and shall have a size distribution. However,

Fig. 4. E�ect of pressure on the sonic velocities at di�erent

void fractions.
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the higher frequency limit of sonic velocity is not

depended on such size distribution, which is very help-
ful for the measurements of the sonic velocities.
Figure 6 gives the e�ect of pipe diameter on the

sonic velocities. Pipe diameter only a�ects the sonic

velocities at low angular frequencies. Review on the
e�ects of velocity di�erence between the two phases
also leads to the same conclusion and the results are

not shown in the present paper. Any parameter, which
increases the momentum or the mass exchange between
the phases, can decrease the sonic velocities at low

angular frequencies. However, higher frequency limits
of sonic velocities are insensitive to such parameters.
Based on the above analysis, the higher frequency limit

of sonic velocity is mainly relied on the system press-
ure and void fraction.
Thermally controlled bubble growth is appropriate

for certain growth rates at low frequencies such as

o< 104 Hz. At very high angular frequencies, the fre-
quencies are well above the bubble resonance so the
vapor and liquid pressure are not equal. The gas phase

shall not be saturated corresponding to its pressure.
The mixture wavelength is also less than the bubble di-

ameter. Therefore, better model on the evaporation

rate between the phases is expected. However, the pre-
sent calculations show that the higher frequency limits
of sonic velocities are insensitive to such evaporation

rate models. At very high angular frequency, results
from any di�erent bubble growth models shall be close
to be `frozen' due to very less time provided between

the phases. The present model is correct for many criti-
cal ¯ashing ¯ows.
Higher frequency limits of sonic velocities are inter-

esting to the practical engineering applications. Henry

[18], England [10] and Karplus [19] measured the two-
phase sonic velocity at low pressures. Comparisons of
the present predictions with their experimental data

are shown in Figs. 7±10. Based on the present study,
the higher frequency limit of sonic velocities are
attained at o=1030104 Hz, therefore, calculations in

Figs. 7±10 are performed at o=104 Hz. In bubbly
¯ow, bubble radius is estimated by the classical corre-
lation such as [20]

Rb � 0:925a0:243�s=gDr��G=mL�0:1 �39�

Fig. 6. E�ect of pipe diameter on the sonic velocities in annu-

lar ¯ow regimes at P = 8.0 MPa and Ur=0.5 m/s.

Fig. 7. Comparison of sonic velocity predictions with exper-

imental data [18].

Fig. 8. Comparison of sonic velocity predictions with exper-

imental data [19].

Fig. 5. E�ect of bubble radius on the sonic velocity in bubbly

and churn ¯ow regime at P= 8.0 MPa, Ur=0.5 m/s and

D= 20.0 mm.
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Assuming a liquid velocity, the velocity di�erence
between the two phases is determined as (S ÿ 1)UL,
where S is the slip ratio. In Fig. 9 void fractions are

determined by

a � 1=�1� SrG�1ÿ x�=�rLx�� �40�

Corresponding to the void fractions, the annular
¯ow exists in Fig. 9. Figure 10 shows the comparison

of the present predictions with experimental data
obtained by Kaizerman et al. [21] at a pressure of 2.0
MPa. From these four curves, the consistency of the

measured values with the theory over the whole range
of the phase distribution considered is remarkable.
Critical ¯ow is an important topic in the safety

analysis of nuclear power plants. Physically, when criti-
cal ¯ow occurs, the signal of pressure variation down-
stream can not propagate upstream, and critical mass

¯ux can be determined as G � �ra: For instance,
nuclear power plant thermal hydraulic codes such as,
TRAC-PFI, RELAP5 include the sonic velocity model
to predict the critical mass ¯ux. However, critical mass

¯ux is predicted poorly due to the accuracy of the
sonic velocities. It is clear that the present job will be

helpful to improve such calculations.

5. Conclusions

1. A wave number K equation is developed in this
paper and it can be used to predict the two-phase

sonic velocity over a wide range of parameters.
Both mechanical and thermal nonequilibrium are
considered in the model.

2. In any ¯ow regime, the sonic velocity increases with

increasing the frequency at o< 1030104 Hz, and
is close to be controlled by the equilibrium.
However, higher frequency limit of sonic velocity

obtains a limit value, and is close to be governed by
the mechanical and thermal nonequilibrium.

3. High frequency limit of sonic velocities are

decreased with increasing the void fraction in bub-
bly ¯ow regime, attain a minimum value in churn
¯ow regime, and are close to those of saturated

vapor in annular ¯ow regime.
4. Bubble radius, tube diameter, and the velocity

di�erence between the two phases a�ect the sonic
velocities at low frequencies. However, the sonic vel-

ocities are insensitive to the variations of these par-
ameters at high frequencies.

5. The present prediction results match the experimen-

tal data very well.

Acknowledgements

The authors would like to thank the Natural Science

Foundation of China for the ®nancial support.

References

[1] F.J. Moody, A pressure pulse model for two-phase criti-

cal ¯ow and sonic velocity, J. Heat Transfer (1969) 371±

384.

[2] D.F. Darcy, On acoustic propagation and critical mass

¯ux in two-phase ¯ow, J. Heat Transfer (1971) 413±421.

[3] R.C. Mecredy, L.J. Hamilton, The e�ects of nonequi-

librium heat, mass and momentum transfer on two-

phase sound speed, Int. J. Heat Mass Transfer 15 (1972)

61±72.

[4] L.Y. Cheng, D.A. Drew, R.T. Lahey Jr, An analysis of

wave propagation in bubbly two-component, two-phase

¯ow, J. Heat Transfer 107 (1985) 402±408.

[5] A.E. Ruggles, R.T. Lahey Jr, D.A. Drew, H.A. Scarton,

An investigation of the propagation of pressure pertur-

bations in bubbly air/water ¯ows, J. Heat Transfer 110

(1988) 494±499.

Fig. 9. Comparison of sonic velocity predictions with exper-

imental data [10].

Fig. 10. Comparison of sonic velocity predictions with exper-

imental data [21].

J. Xu, T. Chen / Int. J. Heat Mass Transfer 43 (2000) 1079±1088 1087



[6] A.E. Ruggles, R.T. Lahey Jr, D.A. Drew, H.A. Scarton,

The relationship between standing waves, pressure pulse

propagation and critical ¯ow rate in two-phase mix-

tures, J. Heat Transfer 111 (1989) 467±473.

[7] N.-N. Chung, W. Liu, Baushei Pei, A model for sound

velocity in a two-phase air±water bubbly ¯ow, Nucl.

Technol. 99 (1992) 80±89.

[8] N.-N. Chung, W. Liu, B. Pei, A model for sound vel-

ocity and its relationship with interfacial area in a

steam±water, two-phase bubbly ¯ow, Nucl. Technol. 99

(1992) 258±267.

[9] V.J. Dejon, J. Firey, E�ect of slip and phase change on

sound velocity in steam±water mixtures and the relation

to critical ¯ow, I&EC Prog. Dev. 7 (3) (1968) 455±

463.

[10] W.G. England, J.G. Firey, D.E. Trapp, Additional vel-

ocity of sound measurement in wet steam, I&EC Prog.

Dev. 5 (2) (1966) 199±202.

[11] J. Weisman, T. Ake, R. Knott, Two-phase pressure

drop across abrupt area changes in oscillatory ¯ow,

Nucl. Sci. Eng. 61 (1966) 297±309.

[12] J.J. Ginoux, Two-Phase Flow and Heat Transfer with

Application to Nuclear Reactor Problems, Von Karman

Institute for Fluid Dynamics, Rhode-Saint-Genese,

Belgium, 1978.

[13] Rivkin, Aleksandrov, Kremenevskaya, Thermodynamic

Derivations for Water and Steam, McGraw-Hill, New

York, 1987.

[14] G.B. Wallis, One-Dimensional Two-Phase Flow,

McGraw-Hill, New York, 1969.

[15] P. Gri�th, G.A. Synder, The bubbly-slug transition in a

high velocity two-phase ¯ow, MIT report (1964) pp.

5003±5029.

[16] P. Gri�th, G.B. Wallis, Two-phase slug ¯ow, J. Heat

Transfer 83 (1961) 307.

[17] K.H. Ardron, R.B. Du�ey, Acoustic wave propagation

in a ¯owing liquid±vapour mixture, Int. J. Multiphase

Flow 4 (1978) 303±322.

[18] R.E. Henry, M.A. Grolmes, H.K. Fauske, Pressure

pulse propagation in two-phase one and two component

mixture, Argonne Natl. Lab. Rev. (1971) 7792.

[19] H.B. Karplus, Propagation of a pressure wave in a mix-

ture of water and steam, Armour Res. Found. Illinois

Institute Technol. Rep. (1961) 4132.

[20] Ozeitoun, M. Shoukri, V. Chatourgoon, Interfacial heat

transfer between steam bubbles and subcooled water in

vertical upward ¯ow, J. Heat Transfer, ASW 117 (1995)

402±407.

[21] S. Kaizerman, E.E. Wacholder, Characteristics analysis

of inhomogeneous, nonequilibrium, two-phase ¯ows

using the drift-¯ux model, Nucl. Sci. Eng. 84 (2) (1983)

168±173.

J. Xu, T. Chen / Int. J. Heat Mass Transfer 43 (2000) 1079±10881088


